III B.Tech - I Semester – Supplementary Examinations NOVEMBER 2024

REFRIGERATION AND AIR CONDITIONING (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

- 2. All parts of Question must be answered in one place.
- BL Blooms Level

CO – Course Outcome

<u>UNIT – I</u>

1.	a)	The atmospheric air at pressure 1 bar and temperature	7 M				
	-5°C is drawn in the cylinder of the compressor of						
		Bell-Coleman refrigerating machine. It is compressed					
		isentropically to a pressure of 5 bar. In the cooler, the					
		compressed air is cooled to 15°C, pressure remaining					
		the same. It is then expanded to a pressure of 1 bar in an					
		expansion cylinder, from where it is passed to the cold					
	chamber. Find: (i) the work done per kg of air, and						
	(ii) C.O.P. of the plant. For air assume law for						
		expansion, $pv^{1.2} = constant$; law for compression,					
		$pv^{1.4}$ = constant and specific heat of air at constant					
	pressure = 1 kJ/kg K .						
	b)	Explain, with a neat sketch, the working principle of	7 M				
		boot-strap evaporative type of air refrigeration system.					
		Draw T-s diagram for the system.					
OR							
2.	a)	A simple air-cooled system is used for an aeroplane	7 M				
		having a load of 9 tonnes. The atmospheric pressure					
		and temperature are 0.9 bar and 10°C respectively.					

					•			
		Duri	ing rammin	ig pressure	increases t	to 1.013 bat	r. In the	
	heat exchanger, the temperature of air is red						uced by	
		55°C	C. The pre	ssure in th	e cabin is	1.01 bar	and the	
		temp	perature o	of air lea	ving the	cabin is	25°C.	
		Dete	ermine: (i)	Power re	equired to	take the	load of	
	cooling in the cabin; (ii) C.O.P. of the system. Ass							
	that all the expansions and compressions a						ntropic.	
	The pressure of the compressed air is 4 bar.							
	b)	Exp	lain with a	a neat ske	tch the re	duced amb	ient air	7 M
		refri	geration sy	stem.				
	1			UNI	$[\mathbf{T} - \mathbf{II}]$			
3.	A refrigerating plant works between temperature lim						e limits	14 M
	of -5°C and 25°C. The working fluid ammonia has a							
	dry	yness	fraction of	of 0.62 at	entry to o	compressor	. If the	
	dryness fraction of 0.62 at entry to compressor. If the machine has a relative efficiency of 55%, calculate the							
	amount of ice formed during a period of 24 hours. The ice							
	is to be formed at 0°C from water at 15°C and 6.4 kg of							
	ammonia is circulated per minute. Specific heat of water is							
	4.187 kJ/kg k and latent heat of ice is 335 kJ/kg. Properties							
	of NH3 (datum - 40°C).							
			Temp.	Liquid	Latent	Entropy		
			°C	heat	heat	of liquid		
				kJ/kg	kJ/kg	kJ/kg K		
			25	298.9	1167.1	1.124		
			-5	158.2	1280.8	0.630		
			5			0.050		
		XX 7 * , 4	. 1		$\frac{OR}{1}$		1 1 /	
4.						led type	7 M	
	 evaporator. b) Define a Refrigerant. Discuss any 6 desirable properties of refrigerants. 							
							7 M	

		<u>UNIT-III</u>	14 M	
5.		Draw a neat diagram of Lithium bromide water absorption		
	ref	frigeration system and explain its working. List-out the		
	ma	ajor fields of applications of this refrigeration system.		
		OR	1	
6.	a)	Explain the working of a steam jet refrigeration system	7 M	
		with the help of a neat sketch.		
	b)	List out the advantages, disadvantages and applications	7 M	
		of the vortex tube.		
		<u>UNIT – IV</u>		
7.	a)	Explain (i) cooling and dehumidification, (ii) sensible	7 M	
		heating.		
	b)	A mixture of dry air and water vapour is at a	7 M	
		temperature of 22°C under a total pressure of 730 mm		
		Hg. The dew point temperature is 15°C.		
		Find :		
		(i) Partial pressure of water vapour		
		(ii) Relative humidity		
		(iii) Specific humidity		
		(iv) Enthalpy of air per kg of dry air		
		(v) Specific volume of air per kg of dry air.		
		OR		
8.	a)	For a hall to be air-conditioned, the following	7 M	
		conditions are given:		
		Outdoor condition: 39°C DBT, 20°C WBT,		
		Required comfort condition.: 20°C DBT, 60% RH		
		Seating capacity of hall: 1200		
		Amount of outdoor air supplied : 0.3 m ³ /min per person		
		If the required condition is achieved first by adiabatic		
		humidification and then by cooling determine:		

		(i) Capacity of the cooling coil in tonnes; and				
	(ii) Capacity of the humidifier in kg/h					
	b) Explain the procedure to draw a Grand sensible heat					
		factor (GSHF) line on a psychrometry chart.				
		<u>UNIT – V</u>				
9.	a)	What is an 'Effective temperature'? Explain 'Effective	7 M			
		temperature chart' and 'Comfort chart'.				
	b)	250 m ³ /min of air at atmospheric conditions 12°C DBT	7 M			
		and 50% RH is supplied to an conditioned hall.				
		The required conditions are 18°C DBT and 60% RH.				
		Determine:				
		(i) Sensible heat and latent heat removed from the air				
		per minute, and				
		(ii) Sensible heat factor for the system.				
		OR				
10.	a)	With the help of neat sketch explain the working of	7 M			
		summer air-conditioning system.				
	b)	Explain the working of axial flow and centrifugal fans	7 M			
		with suitable sketches.				